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Analytical Model 

To explore the evolutionary adaptive dynamics of the CBH, we begin with individuals 𝑖 represented 

by three continuous variables: brain size 𝑏𝑖, adaptive knowledge 𝑎𝑖, and reliance on social learning 

(over asocial learning; e.g. time spent), 𝑠𝑖. We will initially ignore the evolution of oblique learning, 
learning biases, and population structure, and assume that individuals using social learning use 
oblique learning and learning biases to hone in on the target individual with the most adaptive 
knowledge. We will relax this assumption in our simulation and allow oblique learning, learning 
biases, life history, and population structure to endogenously evolve. Table A is a handy key for the 
variables in our analytic model. 

Table A. Variables for analytic model. 

Variable Description Values 

𝑏𝑖 Brain size of individual 𝑖 [0, ∞] 

𝑎𝑖 Adaptive knowledge of individual 𝑖 [0, 𝑏𝑖] 

𝑠𝑖 Reliance on social learning (over asocial learning) of individual 𝑖 [0,1] 

𝜏 Transmission fidelity [0,1] 

𝜁 Asocial learning efficacy [0,1] 

𝑟 Per capita birth rate ≥ 0 

𝑑 Per capita death rate ≥ 0 

𝜙 Scaling coefficient used to scale relationship between adaptive 

knowledge and 𝑟 
≥ 0 

𝛽 Scaling constant relating brain size to death rate (similar to 𝜅 in 

simulation) 
≥ 0 

𝜆 Death rate mitigation (e.g. richness of ecology) used to scale effect 

of 𝑎𝑖 in reducing 𝑑 
≥ 0 

𝑛 Increase in population size [−∞, ∞] 



 

Individual 𝑖 has two routes to acquire adaptive knowledge 𝑎𝑖: (1) through asocial (individual) 

learning as a function of their own brain size 𝑏𝑖 and (2) through social learning as a function of the 

target model from whom they learn (𝑎𝑚). The proportion of time or propensity to use social over 

asocial learning is given by 𝑠𝑖. Thus adaptive knowledge is given by: 

𝑎𝑖 = 𝑠𝑖 ∙ 𝜏 ∙ 𝑎𝑚 + (1 − 𝑠𝑖) ∙ 𝜁 ∙ 𝑏𝑖 (1) 

Where 𝜏 is transmission fidelity (how well an individual can learn from a model), 𝜁 is asocial learning 

efficacy (how effectively an individual can use their brain to figure things out), and 𝑎𝑚 is the 
adaptive knowledge possessed by the individual in the parent generation from whom they are 

learning (e.g. model with maximal 𝑎 or model with average 𝑎, etc).  

The parameters 𝜏 and 𝜁 in Equation 1 are abstractions of more complicated details covered in other 
work. By outsourcing the evolution of these features to other models, we can focus on the core of 
the CBH argument; i.e. how learning, brain size, knowledge, sociality, and life history are 
interconnected. Examples of this earlier work includes, Lewis and Laland [1] model of the 
relationship between transmission fidelity and the rate of trait loss, showing that sufficiently high 
transmission fidelity is necessary for cumulative culture, even more so than novel invention, 
incremental improvement, and recombination. Relatedly, building on work by Henrich  [2], Mesoudi  
[3] models how increases in cumulative culture (driven by, for example, sociality) are more difficult 
for each generation to acquire. Thus, selection favors mechanisms to increase transmission fidelity. 
Muthukrishna and Henrich [4] discuss the many mechanisms to increase transmission fidelity as 
adaptive knowledge accumulates. Mechanisms such as explicit teaching may not be required in a 
small-scale society, but in a large-scale society, not only is explicit teaching required, but also formal 

institutionalized schooling from a variety of teachers. Thus, 𝜏 could include individuals’ cognitive 
abilities [itself increased by culture; see 4], but also greater social tolerance, more interactions or 
opportunities for interaction, and some passive or active teaching by models, and so on [for more 
examples, see 4, 5, 6]. Transmission fidelity could be broken down into constraints and endogenous 
state variables for genetic, cultural, and social factors, as well as interactions between these (e.g. 

genes for sociality), but for the purposes of expressing our argument, here we capture all this with 𝜏.  

Similarly, our model relies on the idea that “bigger” brains will be better at solving novel problems, 
and figuring stuff out [7, 8]. As Deaner, et al. [7] analyses reveal, at least in primates, the best 
predictor of cognitive ability is overall brain size. But, as with transmission fidelity, many factors will 
influence individuals’ ability to use their brains, such as constraints on time (for trial and error 

learning) or energy. These constraints are captured by 𝜁.  
We take an evolutionary adaptive dynamics approach to find the evolutionary stable strategies (ESS) 
in our model. This approach involves assuming a monomorphic population and then looking at the 
“invasibility” of the population to a mutant (in variables of interest) with slightly different values. 
Appropriate to the dynamics we are interested in, this analytic method assumes mutations are small 
(i.e. we are not exploring competition between two vastly different groups).  
Social Learning. To determine the average adaptive knowledge in a population that is 

monomorphic for resident genotype (𝑠, 𝑏), we’ll initially assume that genotype is fixed over the 
course of learning. We’ll assume that the learning process leads to a distribution of adaptive 
knowledge values in the population and that individuals using social learning select a model using 
payoff-biased learning, choosing to learn from the model with the maximal possible value of 

adaptive knowledge 𝑎𝑚𝑎𝑥 (i.e., they learn from the rare individual who has attained the maximal 
value). In the simulation, we will relax this assumption and allow oblique learning (learning from 



non-genetic parents) and learning bias to evolve. Assuming individuals do learn from the best model 
when social learning, the mean adaptive knowledge in the population is given by: 

𝑎̅(𝑠, 𝑏) = 𝑠 ∙ 𝜏 ∙ 𝑎𝑚𝑎𝑥 + (1 − 𝑠) ∙ 𝜁 ∙ 𝑏 (2) 

We further assume that the maximal adaptive knowledge is constrained by the brain size of the 

learner, such that 𝑎𝑚𝑎𝑥 = 𝜈𝑏, where 𝜈 > 0 is some scaling parameter. As we shall see, the insights 

of the model are independent of the specific value of the 𝜈 scaling. Thus, Equation 2 becomes: 

𝑎̅(𝑠, 𝑏) = 𝑠 ∙ 𝜏 ∙ 𝜈 ∙ 𝑏 + (1 − 𝑠) ∙ 𝜁 ∙ 𝑏 (2a) 

We can now easily understand the adaptive dynamics of the social learning trait (𝑠) assuming more 

adaptive knowledge has a higher payoff. For a given brain size (𝑏), we simply compare 𝜏𝜈𝑏 and 𝜁𝑏: 

if 𝜏𝜈𝑏 > 𝜁𝑏, then it pays to increase 𝑠 as much as possible to maximize adaptive knowledge (i.e. 𝑠 →
1); conversely, if 𝜏𝜈𝑏 < 𝜁𝑏, then it pays to decrease 𝑠 as much as possible to maximize adaptive 

knowledge (i.e. 𝑠 → 0). This will be true as long as individuals have access to a range of models and 
are learning from the model with the greatest adaptive knowledge. Given these conditions, the key 
to reliance on social learning is the ability to learn with high fidelity and the key to reliance on asocial 
learning is the ability to efficiently use one’s brain to learn by oneself. Further, if there is some 
limitation on accessing the model with the maximal adaptive knowledge, such as ineffective payoff 
biased learning making it difficult to identify who has the most adaptive knowledge or too small or 
disconnected a population for at least one individual to consistently reach this maximal value every 
generation, then the evolution of social learning is also going to depend on the maximal adaptive 
knowledge learners have access to. We explore these dynamics in the simulation model. 
Brain Size. To determine the adaptive dynamics of brain size, we need an ecological model for 

monomorphic populations (i.e. for populations that consist of a single resident type (𝑠, 𝑏)). To do 
this, we need to specify how the various traits affect the birth and death rates in the model. We use a 
logistic ecological model: 

𝑑𝑁

𝑑𝑡
= (𝑟 − 𝑑) ∙ 𝑁 (3) 

Here 𝑁 is population density, 𝑟 is the per capita birth rate of the resident and 𝑑 is the per capita 

death rate of the resident. Next, we specify the per capita birth rate (𝑟) and death rate (𝑑). We 

assume the birth rate 𝑟 decreases with population size (density dependence influencing carrying 
capacity), but that that decrease is slower with increased adaptive knowledge (e.g. allowing you to 
support more offspring or outcompete competitors in access to mating opportunities). The birth 

rate (𝑟) is given by: 

𝑟 = 𝜌 (1 −
𝑁

𝑘0 + 𝑘1𝑎̅
) 

= 𝜌 (1 −
𝑁

𝑘0 + 𝑘1(𝑠 ∙ 𝜏 ∙ 𝜈 ∙ 𝑏 + (1 − 𝑠) ∙ 𝜁 ∙ 𝑏)
) 

(4) 

Where 𝜌 is the maximal birth rate and that dependence leads to a linear decrease in the birth rate 
given by the second half of Equation 4. This linear decrease is assumed to be influenced by the 

mean adaptive knowledge (𝑎̅), such that more adaptive knowledge leads to a larger denominator, 

slowing the decrease with density dependence (allowing for a higher effective carrying capacity). 𝑘0 

and 𝑘1 are positive parameters, which we set to 1, without loss of generality, in the following 
analyses. 



We assume that a larger brain is more costly than a smaller brain in terms of death rate (e.g. higher 
calorie requirements), but that more adaptive knowledge lowers the death rate (e.g. finding food or 

evading predators). The death rate (𝑑) is given by: 

𝑑 = 𝛽 ∙ 𝑏𝑛 ∙ 𝑒−𝜆𝑎
𝑏⁄  (5) 

This function assumes that the cost of brains scales up in a polynomial fashion (e.g. 𝑛 = 2), but that 
the reduction in the death rate through adaptive knowledge is an exponential decay, where adaptive 

knowledge is bounded by brain size (i.e. 𝑎 ≤ 𝜈𝑏). Here 𝛽 scales the maximum brain size and 𝜆 
scales the death rate reducing payoff to adaptive knowledge. The degree to which adaptive 

knowledge can offset brain size is determined by 𝜆 and the ratio of adaptive knowledge to brain size 
(adaptive knowledge is constrained by brain size regardless of learning mechanism and as brains 

grow, more knowledge is required to provide an equivalent offset). The 𝜆 parameter allows us to 

adjust the extent to which adaptive knowledge can offset the costs of brain size, where 𝜆 = 0 

indicates no offset and increasing 𝜆 increases the probability of survival for a given adaptive 

knowledge and brain size. The 𝜆 parameter can be interpreted as how much adaptive knowledge one 
requires to unlock the fitness-enhancing advantages. For example, in a calorie-rich environment 
where only a little skill or knowledge is required to access calories (e.g. simply remembering food 

locations), 𝜆 would be high – a little bit of knowledge gives a large return. Conversely, in a calorie-
poor environment where a lot of skills or knowledge are required to access fewer calories (e.g. food 

needs significant preparation before safe consumption), 𝜆 would be low. Note that this is a 
mechanical relationship between adaptive knowledge and probability of survival. Calorie availability 
is a potentially useful metaphor to think about the model in concrete term, but its is not the only 

interpretation of 𝜆, which could be influenced any number of factors, including knowledge required 
to evade predators or avoid environmental hazards. We are also not directly saying anything about 

selection on cognition, brain size, or information use [9]. For example, high 𝜆 might allow for larger 

brains due to greater food availability for given food finding knowledge, but equally, when 𝜆 is low, 
there may be selection pressure for larger brains with more knowledge needed to acquire the more 
difficult to access food. 
In the analytic model, the decrease to the death rate through adaptive knowledge becomes a 
constant since adaptive knowledge is a function of brain size (and parameters affecting learning 
efficiency), but although this will not affect the dynamics of the model, it will affect the final brain 
sizes. We fully explore this in the simulation. 

Given a resident (𝑠, 𝑏), the equilibrium population size of the resident is determined by the solution 
to Equation 3: 

𝑟(𝑁∗) = 𝑑(𝑏) (6) 

Since we know that 𝑠 → 0 when 𝜏𝜈 < 𝜁 and 𝑠 → 1 when 𝜏𝜈 > 𝜁, we can consider these two cases, 
asocial learners and social learners, separately and then compare the outcomes of these two regimes. 

Asocial learners (𝒔 = 𝟎) 

To determine the adaptive dynamics of brain size, consider a mutant (designated by subscript “m”) 

with brain 𝑏𝑚. This mutant’s adaptive knowledge based on Equation 1 will be 𝑎𝑚 = 𝜁𝑏𝑚, since 𝑠 =
0. Using the same ecological assumptions as before for a mutant type 𝑏𝑚, and assuming the mutant 

is rare and growing (initially) in a resident population that is at its ecological equilibrium 𝑁∗, the per 
capita growth rate of the mutant, its invasion fitness, is: 



𝑓(𝑏, 𝑏m) = 𝑟𝑚(𝑁∗) − 𝑑(𝑏𝑚) 

=  𝜌 (1 −
𝑁∗

1 + 𝑎𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒
−𝜆

𝑎𝑚
𝑏𝑚

⁄
 

=  𝜌 (1 −
𝑁∗

1 + 𝜁𝑏𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒
−𝜆

𝜁𝑏𝑚
𝑏𝑚

⁄
 

=  𝜌 (1 −
𝑁∗

1 + 𝜁𝑏𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒−𝜆𝜁 

(7) 

To examine the adaptive dynamics of brain size, we need to calculate the selection gradient by taking 

the derivative of the invasion fitness 𝑓 with respect to the mutant trait 𝑏𝑚 and evaluate this 

derivative at the resident value 𝑏. To calculate if these equilibria are stable, we will calculate the 
second derivative. If the second derivative is negative, then the value is a convergent stable ESS. For 
those unfamiliar with this approach, it may be helpful to use a physical analog—distance, speed, and 
acceleration (or more accurately, displacement, velocity, and acceleration). The derivative of distance 
over time (metres) is speed (metres per second). The second derivative (derivative of speed) is 
acceleration (metres per second per second). The adaptive dynamics approach is the equivalent of 
looking at when an object is stationary (i.e. speed—derivative of distance—is 0) and confirming that 
these “equilibria” stationary points are convergent by confirming that objects decelerate around 
these points (i.e. acceleration—second derivative—is negative). If the second derivative were 
positive, objects would increase speed and move away from this stationary point, or in the present 
case, there would be positive selection for mutants away from this equilibrium. Let us calculate the 
selection gradient for brain size: 

𝑑𝑏

𝑑𝑡
=

𝛿𝑓

𝛿𝑏𝑚
|𝑏𝑚=𝑏 =

𝜌𝜁𝑁∗

(1 + 𝜁𝑏)2
− 𝑛𝛽𝑒−𝜆𝜁𝑏𝑛−1 (8) 

From Equation 8 we can see that if 𝑛 > 1, 𝑑𝑏 𝑑𝑡⁄ < 0 for large 𝑏 and 𝑑𝑏 𝑑𝑡⁄ > 0 for small 𝑏, 

which suggests that there is some intermediate ESS value for brain size (𝑏∗). It is straightforward to 
check that the second derivative of the invasion fitness function (Equation 8) with respect to the 
mutant trait and evaluated at the resident trait is always negative and therefore the singular strategy 

𝑏∗ is a CSS (i.e., a convergent stable ESS). This equilibrium brain value (i.e. when 𝑑𝑏 𝑑𝑡⁄ = 0) is 

difficult to solve for a generic polynomial 𝑛. To calculate a solution, we can select a reasonable 

polynomial (e.g. 𝑛 = 2, which we use in the simulation) and solve for 𝑑𝑏 𝑑𝑡⁄ = 0. As long as brain 
size is positive, the relationship between brain size and the death rate will be superlinear and 
monotonous; our qualitative results should be robust to the specific polynomial used. Here is the 

equilibrium brain size for 𝑛 = 2: 

𝑏∗ =
−𝛽 + √𝛽2 + 3𝜌𝜁2𝛽𝑒𝜆𝜁

3𝜁𝛽
 (9) 

We need to compare the equilibrium brain size among asocial learners expressed in Equation 9 with 
the equilibrium brain size among social learners, so let’s now calculate the dynamics for social 
learners. 

Social learners (𝒔 = 𝟏 ) 
To determine the adaptive dynamics of brain size, consider a mutant (designated by subscript “m”) 

with brain 𝑏𝑚. This mutant’s adaptive knowledge based on Equation 1 will be 𝑎𝑚 = 𝜏𝜈𝑏𝑚, since 



𝑠 = 1. Using the same ecological assumptions as before for a mutant type 𝑏𝑚, and assuming the 

mutant is rare and growing (initially) in a resident population that is at its ecological equilibrium 𝑁∗, 
the per capita growth rate of the mutant, its invasion fitness, is: 

𝑓(𝑏res, 𝑏m) = 𝑟𝑚(𝑁∗) − 𝑑(𝑏𝑚) 

=  𝜌 (1 −
𝑁∗

1 + 𝑎𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒
−𝜆

𝑎𝑚
𝑏𝑚

⁄
 

=  𝜌 (1 −
𝑁∗

1 + 𝜏𝜈𝑏𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒
−𝜆

𝜏𝜈𝑏𝑚
𝑏𝑚

⁄
 

=  𝜌 (1 −
𝑁∗

1 + 𝜏𝜈𝑏𝑚
) − 𝛽 ∙ 𝑏𝑚

𝑛 ∙ 𝑒−𝜆𝜏𝜈 

(10) 

As before, to examine the adaptive dynamics of brain size, we need to calculate the selection 

gradient by taking the derivative of the invasion fitness 𝑓 with respect to the mutant trait 𝑏𝑚 and 

evaluate this derivative at the resident value 𝑏𝑟𝑒𝑠. To calculate if these equilibria are stable, we will 
calculate the second derivative. If the second derivative is negative, then the value is a convergent 
stable ESS. Let us calculate the selection gradient for the brain size of social learners: 

𝑑𝑏

𝑑𝑡
=

𝛿𝑓

𝛿𝑏𝑚
|𝑏𝑚=𝑏𝑟𝑒𝑠

=
𝜌𝜏𝜈𝑁∗

(1 + 𝜏𝜈𝑏)2
− 𝑛𝛽𝑒−𝜆𝜏𝜈𝑏𝑛−1 (11) 

As with asocial learners, from Equation 11 we can see that if 𝑛 > 1, 𝑑𝑏 𝑑𝑡⁄ < 0 for large 𝑏 and 

𝑑𝑏 𝑑𝑡⁄ > 0 for small 𝑏, which suggests that there is some intermediate ESS value for brain size (𝑏∗). 
As before, it is straightforward to check that the second derivative of the invasion fitness function 
(Equation 11) with respect to the mutant trait and evaluated at the resident trait is always negative 

and therefore the singular strategy 𝑏∗ is a CSS (i.e., a convergent stable ESS). We can set 𝑛 = 2 and 

calculate this equilibrium brain value (i.e. when 𝑑𝑏 𝑑𝑡⁄ = 0): 

𝑏∗ =
−𝛽 + √𝛽2 + 3𝜌𝜏2𝜈2𝛽𝑒𝜆𝜁

3𝜏𝜈𝛽
 (12) 

Equation 12 is functionally similar to Equation 9, but the equilibrium brain size for asocial and social 

learners will be different. Moreover, since to enter the realm of social learning, 𝜏𝜈𝑏 > 𝜁𝑏, social 
learners, ceteris paribus, will have larger equilibrium brain sizes than asocial learners. Note this 
prediction – that social learners will have larger brain sizes than asocial learners – is an outcome of 
the model, not an assumption. Moreover, transmission fidelity, asocial learning efficacy, and the 
payoff for adaptive knowledge (e.g. richness of the environment) are all going to affect the 
equilibrium brain size.  
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